Sunday, May 13, 2012

Turnigy 9x TX Mods

The Turnigy 9x is a great beginner TX, but it definitely needs some adjustments to make it better. I first added a reliable battery, then fixed the trainer mode, and finally, put the er9x firmware on it.

Battery Mod
This is almost a must do because the stock AA holder is very unreliable and can become disconnected during flight(yikes, quad on the loose...). I've seen two main fixes for this; Li-Ion batteries, or Li-Fe/Po transmitter packs.


Trainer Mode Fix
I did this mod so that i don't have to unplug the transmitter module in the TX every time I want to do trainer mode or use the 9x for a simulator.
First, take out all the screws in the back of the case 
and unplug the cable connecting the two halves.
Look at the back half and find the trace pointed to in the picture.
Cut the trace with an knife and make sure that it is cut with a multimeter. Now, you have two options; you can put a 1k resistor in between the two blue circled solder points, or, you can scrape off the light green part   above and below the trace until you hit copper, and then solder the 1k resistor on the two scraped off places.
Done!


er9x Firmware
This mod replaces the stock Turnigy firmware and replaces it with the er9x firmware which has way more features, and maybe even the best part; it disables the beeper if you want! This requires a AVR ISP of some sort; i used a Arduino, but those other fancy ones work too :). You''ll obviously need to crack open your case, so you might as well do the trainer mode fix at the same time.

Inside the TX:
Once you have your TX open, solder wires onto the labeled solder pads. 
Then, label the other ends of the wires so you don't mix them up later(that would be bad). 
You can either just have a cable that comes out(through a pre-made hole in the battery compartment) like i did, or you can cut a little hole in the case a put a standard ISP header in there(probably better).

Now you need to get the Arduino ready. ...And this is where it went all wrong. Apparently the Arduino ISP sketch that is provided with the IDE isn't fully working in 1.0, so i had to change a few things to get it to work.
1. The serial buffer size needs to be changed so that the Arduino can keep up with the data(er9x firmware) being sent to it over serial. To do this, find your arduino directory(arduino-1.0 somewhere), then go to: arduino-1.0\hardware\arduino\cores\arduino\ and open HardwareSerial.cpp  in a text editor. Search for #define SERIAL_BUFFER_SIZE and change its value from 64 to 128.

2. The current Arduino ISP sketch cant handle the large EEPROM, so use this sketch instead. Upload it now:
// this sketch turns the Arduino into a AVRISP
// using the following pins:
// 10: slave reset
// 11: MOSI
// 12: MISO
// 13: SCK

// Put an LED (with resistor) on the following pins:
// 9: Heartbeat - shows the programmer is running
// 8: Error - Lights up if something goes wrong (use red if that makes sense)
// 7: Programming - In communication with the slave
//
// October 2010 by Randall Bohn
// - Write to EEPROM > 256 bytes
// - Better use of LEDs:
// -- Flash LED_PMODE on each flash commit
// -- Flash LED_PMODE while writing EEPROM (both give visual feedback of writing progress)
// - Light LED_ERR whenever we hit a STK_NOSYNC. Turn it off when back in sync.
//
// October 2009 by David A. Mellis
// - Added support for the read signature command
//
// February 2009 by Randall Bohn
// - Added support for writing to EEPROM (what took so long?)
// Windows users should consider WinAVR's avrdude instead of the
// avrdude included with Arduino software.
//
// January 2008 by Randall Bohn
// - Thanks to Amplificar for helping me with the STK500 protocol
// - The AVRISP/STK500 (mk I) protocol is used in the arduino bootloader
// - The SPI functions herein were developed for the AVR910_ARD programmer
// - More information at http://code.google.com/p/mega-isp
#include "pins_arduino.h"  // defines SS,MOSI,MISO,SCK
#define SCK 13
#define MISO 12
#define MOSI 11
#define RESET 10

#define LED_HB 9
#define LED_ERR 8
#define LED_PMODE 7
#define PROG_FLICKER true

#define HWVER 2
#define SWMAJ 1
#define SWMIN 18

// STK Definitions
#define STK_OK 0x10
#define STK_FAILED 0x11
#define STK_UNKNOWN 0x12
#define STK_INSYNC 0x14
#define STK_NOSYNC 0x15
#define CRC_EOP 0x20 //ok it is a space...

void pulse(int pin, int times);

void setup() {
  Serial.begin(19200);
  pinMode(LED_PMODE, OUTPUT);
  pulse(LED_PMODE, 2);
  pinMode(LED_ERR, OUTPUT);
  pulse(LED_ERR, 2);
  pinMode(LED_HB, OUTPUT);
  pulse(LED_HB, 2);
}

int error=0;
int pmode=0;
// address for reading and writing, set by 'U' command
int here;
uint8_t buff[256]; // global block storage

#define beget16(addr) (*addr * 256 + *(addr+1) )
typedef struct param {
  uint8_t devicecode;
  uint8_t revision;
  uint8_t progtype;
  uint8_t parmode;
  uint8_t polling;
  uint8_t selftimed;
  uint8_t lockbytes;
  uint8_t fusebytes;
  int flashpoll;
  int eeprompoll;
  int pagesize;
  int eepromsize;
  int flashsize;
}
parameter;

parameter param;

// this provides a heartbeat on pin 9, so you can tell the software is running.
uint8_t hbval=128;
int8_t hbdelta=8;
void heartbeat() {
  if (hbval > 192) hbdelta = -hbdelta;
  if (hbval < 32) hbdelta = -hbdelta;
  hbval += hbdelta;
  analogWrite(LED_HB, hbval);
  delay(40);
}


void loop(void) {
  // is pmode active?
  if (pmode) digitalWrite(LED_PMODE, HIGH);
  else digitalWrite(LED_PMODE, LOW);
  // is there an error?
  if (error) digitalWrite(LED_ERR, HIGH);
  else digitalWrite(LED_ERR, LOW);

  // light the heartbeat LED
  heartbeat();
  if (Serial.available()) {
    avrisp();
  }
}

uint8_t getch() {
  while(!Serial.available());
  return Serial.read();
}
void fill(int n) {
  for (int x = 0; x < n; x++) {
    buff[x] = getch();
  }
}

#define PTIME 30
void pulse(int pin, int times) {
  do {
    digitalWrite(pin, HIGH);
    delay(PTIME);
    digitalWrite(pin, LOW);
    delay(PTIME);
  }
  while (times--);
}

void prog_lamp(int state) {
  if (PROG_FLICKER)
    digitalWrite(LED_PMODE, state);
}

void spi_init() {
  uint8_t x;
  SPCR = 0x53;
  x=SPSR;
  x=SPDR;
}

void spi_wait() {
  do {
  }
  while (!(SPSR & (1 << SPIF)));
}

uint8_t spi_send(uint8_t b) {
  uint8_t reply;
  SPDR=b;
  spi_wait();
  reply = SPDR;
  return reply;
}

uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
  uint8_t n;
  spi_send(a);
  n=spi_send(b);
  //if (n != a) error = -1;
  n=spi_send(c);
  return spi_send(d);
}

void empty_reply() {
  if (CRC_EOP == getch()) {
    Serial.print((char)STK_INSYNC);
    Serial.print((char)STK_OK);
  } else {
    error++;
    Serial.print((char)STK_NOSYNC);
  }
}

void breply(uint8_t b) {
  if (CRC_EOP == getch()) {
    Serial.print((char)STK_INSYNC);
    Serial.print((char)b);
    Serial.print((char)STK_OK);
  }
  else {
    error++;
    Serial.print((char)STK_NOSYNC);
  }
}

void get_version(uint8_t c) {
  switch(c) {
  case 0x80:
    breply(HWVER);
    break;
  case 0x81:
    breply(SWMAJ);
    break;
  case 0x82:
    breply(SWMIN);
    break;
  case 0x93:
    breply('S'); // serial programmer
    break;
  default:
    breply(0);
  }
}

void set_parameters() {
  // call this after reading paramter packet into buff[]
  param.devicecode = buff[0];
  param.revision = buff[1];
  param.progtype = buff[2];
  param.parmode = buff[3];
  param.polling = buff[4];
  param.selftimed = buff[5];
  param.lockbytes = buff[6];
  param.fusebytes = buff[7];
  param.flashpoll = buff[8];
  // ignore buff[9] (= buff[8])
  // following are 16 bits (big endian)
  param.eeprompoll = beget16(&buff[10]);
  param.pagesize = beget16(&buff[12]);
  param.eepromsize = beget16(&buff[14]);

  // 32 bits flashsize (big endian)
  param.flashsize = buff[16] * 0x01000000
    + buff[17] * 0x00010000
    + buff[18] * 0x00000100
    + buff[19];

}

void start_pmode() {
  spi_init();
  // following delays may not work on all targets...
  pinMode(RESET, OUTPUT);
  digitalWrite(RESET, HIGH);
  pinMode(SCK, OUTPUT);
  digitalWrite(SCK, LOW);
  delay(50);
  digitalWrite(RESET, LOW);
  delay(50);
  pinMode(MISO, INPUT);
  pinMode(MOSI, OUTPUT);
  spi_transaction(0xAC, 0x53, 0x00, 0x00);
  pmode = 1;
}

void end_pmode() {
  pinMode(MISO, INPUT);
  pinMode(MOSI, INPUT);
  pinMode(SCK, INPUT);
  pinMode(RESET, INPUT);
  pmode = 0;
}

void universal() {
  int w;
  uint8_t ch;

  fill(4);
  ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]);
  breply(ch);
}

void flash(uint8_t hilo, int addr, uint8_t data) {
  spi_transaction(0x40+8*hilo,
  addr>>8 & 0xFF,
  addr & 0xFF,
  data);
}
void commit(int addr) {
  if (PROG_FLICKER) prog_lamp(LOW);
  spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0);
  if (PROG_FLICKER) {
    delay(PTIME);
    prog_lamp(HIGH);
  }
}

//#define _current_page(x) (here & 0xFFFFE0)
int current_page(int addr) {
  if (param.pagesize == 32) return here & 0xFFFFFFF0;
  if (param.pagesize == 64) return here & 0xFFFFFFE0;
  if (param.pagesize == 128) return here & 0xFFFFFFC0;
  if (param.pagesize == 256) return here & 0xFFFFFF80;
  return here;
}


void write_flash(int length) {
  fill(length);
  if (CRC_EOP == getch()) {
    Serial.print((char) STK_INSYNC);
    Serial.print((char) write_flash_pages(length));
  } else {
    error++;
    Serial.print((char) STK_NOSYNC);
  }
}

uint8_t write_flash_pages(int length) {
  int x = 0;
  int page = current_page(here);
  while (x < length) {
    if (page != current_page(here)) {
      commit(page);
      page = current_page(here);
    }
    flash(LOW, here, buff[x++]);
    flash(HIGH, here, buff[x++]);
    here++;
  }

  commit(page);

  return STK_OK;
}

#define EECHUNK (32)
uint8_t write_eeprom(int length) {
  // here is a word address, get the byte address
  int start = here * 2;
  int remaining = length;
  if (length > param.eepromsize) {
    error++;
    return STK_FAILED;
  }
  while (remaining > EECHUNK) {
    write_eeprom_chunk(start, EECHUNK);
    start += EECHUNK;
    remaining -= EECHUNK;
  }
  write_eeprom_chunk(start, remaining);
  return STK_OK;
}
// write (length) bytes, (start) is a byte address
uint8_t write_eeprom_chunk(int start, int length) {
  // this writes byte-by-byte,
  // page writing may be faster (4 bytes at a time)
  fill(length);
  prog_lamp(LOW);
  for (int x = 0; x < length; x++) {
    int addr = start+x;
    spi_transaction(0xC0, (addr>>8) & 0xFF, addr & 0xFF, buff[x]);
    delay(45);
  }
  prog_lamp(HIGH);
  return STK_OK;
}

void program_page() {
  char result = (char) STK_FAILED;
  int length = 256 * getch() + getch();
  char memtype = getch();
  // flash memory @here, (length) bytes
  if (memtype == 'F') {
    write_flash(length);
    return;
  }
  if (memtype == 'E') {
    result = (char)write_eeprom(length);
    if (CRC_EOP == getch()) {
      Serial.print((char) STK_INSYNC);
      Serial.print(result);
    } else {
      error++;
      Serial.print((char) STK_NOSYNC);
    }
    return;
  }
  Serial.print((char)STK_FAILED);
  return;
}

uint8_t flash_read(uint8_t hilo, int addr) {
  return spi_transaction(0x20 + hilo * 8,
    (addr >> 8) & 0xFF,
    addr & 0xFF,
    0);
}

char flash_read_page(int length) {
  for (int x = 0; x < length; x+=2) {
    uint8_t low = flash_read(LOW, here);
    Serial.print((char) low);
    uint8_t high = flash_read(HIGH, here);
    Serial.print((char) high);
    here++;
  }
  return STK_OK;
}

char eeprom_read_page(int length) {
  // here again we have a word address
  int start = here * 2;
  for (int x = 0; x < length; x++) {
    int addr = start + x;
    uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF);
    Serial.print((char) ee);
  }
  return STK_OK;
}

void read_page() {
  char result = (char)STK_FAILED;
  int length = 256 * getch() + getch();
  char memtype = getch();
  if (CRC_EOP != getch()) {
    error++;
    Serial.print((char) STK_NOSYNC);
    return;
  }
  Serial.print((char) STK_INSYNC);
  if (memtype == 'F') result = flash_read_page(length);
  if (memtype == 'E') result = eeprom_read_page(length);
  Serial.print(result);
  return;
}

void read_signature() {
  if (CRC_EOP != getch()) {
    error++;
    Serial.print((char) STK_NOSYNC);
    return;
  }
  Serial.print((char) STK_INSYNC);
  uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00);
  Serial.print((char) high);
  uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00);
  Serial.print((char) middle);
  uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00);
  Serial.print((char) low);
  Serial.print((char) STK_OK);
}
//////////////////////////////////////////
//////////////////////////////////////////


////////////////////////////////////
////////////////////////////////////
int avrisp() {
  uint8_t data, low, high;
  uint8_t ch = getch();
  switch (ch) {
  case '0': // signon
    error = 0;
    empty_reply();
    break;
  case '1':
    if (getch() == CRC_EOP) {
      Serial.print((char) STK_INSYNC);
      Serial.print("AVR ISP");
      Serial.print((char) STK_OK);
    }
    break;
  case 'A':
    get_version(getch());
    break;
  case 'B':
    fill(20);
    set_parameters();
    empty_reply();
    break;
  case 'E': // extended parameters - ignore for now
    fill(5);
    empty_reply();
    break;

  case 'P':
    start_pmode();
    empty_reply();
    break;
  case 'U': // set address (word)
    here = getch() + 256 * getch();
    empty_reply();
    break;

  case 0x60: //STK_PROG_FLASH
    low = getch();
    high = getch();
    empty_reply();
    break;
  case 0x61: //STK_PROG_DATA
    data = getch();
    empty_reply();
    break;

  case 0x64: //STK_PROG_PAGE
    program_page();
    break;
 
  case 0x74: //STK_READ_PAGE 't'
    read_page();  
    break;

  case 'V': //0x56
    universal();
    break;
  case 'Q': //0x51
    error=0;
    end_pmode();
    empty_reply();
    break;
 
  case 0x75: //STK_READ_SIGN 'u'
    read_signature();
    break;

  // expecting a command, not CRC_EOP
  // this is how we can get back in sync
  case CRC_EOP:
    error++;
    Serial.print((char) STK_NOSYNC);
    break;
 
  // anything else we will return STK_UNKNOWN
  default:
    error++;
    if (CRC_EOP == getch())
      Serial.print((char)STK_UNKNOWN);
    else
      Serial.print((char)STK_NOSYNC);
  }
}

Now for the Arduino hardware side:
1. Unplug your Arduino form the computer and connect the wires from the TX that you just soldered as follows:
Arduino Pin: 9x transmitter
10: RST
11: MOSI
12: MISO
13: SCK
5v: 5v
Gnd: Gnd
2. Put a 120ohm resistor between +5v and Reset on the Arduino. This stops the Arduino from rebooting in the ISP process.

Next up is the er9x firmware buring software.
2. When you open it, it should ask if you want to download the latest er9x firmware, click yes.
3. Go to burn->configure in the eepe software
select the avrisp programmer.
select m64 mcu.
select port your Arduino is connected to.
type -b 19200 in extra arguments.
4. You should probably backup the firmware, memory and EEPROM using the options in the burn menu( i didn't...oops) in case of an issue with the er9x firmware.
5. Go to burn->Flash Firmware to TX and select the firmware you saved from step 2. 
6. Should say complete after a minute or two!!

Joystick PPM Interface
This isn't really a mod, but it should make flying easier by hooking up a PC gaming joystick. Nothing too fancy, just a old game port joystick that is connected to a Arduino which sends PPM signals to the TX trainer port.......later

No comments:

Post a Comment